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Preliminaries

I Cycle graph, such that each frog has two neighbors

I Identical probability p for each frog at each iteration

I Restriction: A frog returns if it is more than one level above
its neighbors



Preliminaries



Preliminaries

→ (1,−1,−1,−1, 1, 0, 1, 0)

I Represent Motzkin Path as a vector

I We call this a state

I The number of states are enumerated by the central trinomial
coefficients

I Our goal is to get a bound for the asymptotic speed
S(K)



Markov Chains

Definition

A Markov Chain is collection of random variables Xt , t = 0, 1, ...,
having the property that, given the present, the future is
conditionally independent of the past.



Markov Chains

Definition

A Markov Chain is collection of random variables Xt , t = 0, 1, ...,
having the property that, given the present, the future is
conditionally independent of the past.

I For any finite K we have a Markov chain where the random
variable represent transition probabilities between states



Example, K = 2

M =


1 2 3

1 p11 p12 p13

2 p21 p22 p23

3 p31 p32 p33





Example, K = 2

M =

 Q
... R

. . . . . .

0
... IK


For K = 2 we have

Q =

q2 pq pq
0 pq + q2 0
0 0 pq + q2

 and R =

p2 0 0
pq p2 0
pq 0 p2

 .



Example, K = 2

It can be easily checked that

(I − Q)−1

1
1
1

 =


2p−3
p(p−2)

1
2p(1−p)

1
2p(1−p)





Example, K = 2

It can be easily checked that

(I − Q)−1

1
1
1

 =


2p−3
p(p−2)

1
2p(1−p)

1
2p(1−p)


I We can do this for any fixed K ∈ N, i.e. S(K ) exists

I In this example we see that the expected time spent in state 2
and state 3 is the same

I e.g. When p = 1
2 we have

8/3
2
2





We need a new approach for when K →∞. Define

I Xn,k are our random variables indexed by level and frog

I Indicator function Ln(i , j)

I T (N,K ) = maxk1,...,kN{(
∏N

n=2 Ln(kn−1, kn))
∑N

n=1 Xn,kn}
I r = E [

∑K
j=1 Ln(i , j)] for all i and n



Theorem (Chang and Nelson)

If the moment generating function of the time it takes for a frog to
jump, Xn,k , exists for some finite 0 < θ0

φ(θ)
def
= E [eθXn,k ] <∞ for θ ≤ θ0

then the asymptotic speed S(K ) for all of the frogs to jump higher
than some fixed level is bounded below 1

t∗ , where

t∗ = inf{t ≥ 1|rm(t) < 1}

and
m(t) = inf

0<θ<θ0
{e−θtφ(θ)}.



Sketch of Proof

Definition

A Martingale is a sequence of random variables X1,X2, ... where
the following is true

E [|Xn|] <∞ and E [Xn+1|X1, ...Xn] = Xn

Mn(θ) =
1

(rφ(θ))n

K∑
k1=1

...

K∑
kN=1

(
n∏

m=2

Lm−1(km−1, km)

)
eθ

∑n
m=1 Xm,km



Sketch of Proof

Lemma

For the system as previously defined,

1

S(K )
= lim sup

N→∞

T (N,K )

N
≤ t∗, a.s.

eθT (N,K) = max
k1,...,kN

{
N∏

n=2

Ln(kn−1, kn)eθ
∑N

n=1 Xn,kn

}
≤ (rφ(θ))NMN(θ).



Sketch of Proof

Markov’s Inequality

P(X > t) ≤ E [X ]

t

P

(
T (N,K )

N
> t

)
= P

(
eθT (N,K) > eθNt

)
≤ e−θNtE

[
eθT (N,K)

]
≤ K

r
(re−θtφ(θ))N



Sketch of Proof

Thus, since
∑

N P
(
T (N,K)

N > t
)
<∞ if rm(t) < 1. Hence we

have

P

(
lim sup
N→∞

(
T (N,K )

N
> t

))
= 0

which implies

lim sup
n→∞

T (N,K )

N
≤ t∗, a.s



Main Theorem

Theorem

Given K 2 iteations, the probability that all frogs have jumped
above level N, where N = aK 2 and a < −lnq

lnr , is 1− αβK2
, where

β < 1. That is,

P(T (N,K ) ≤ K 2)
K→∞−→ 1



Main Theorem

Theorem

Given K 2 iteations, the probability that all frogs have jumped
above level N, where N = aK 2 and a < −lnq

lnr , is 1− αβK2
, where

β < 1. That is,

P(T (N,K ) ≤ K 2)
K→∞−→ 1

P(T (N,K ) > K 2) = P(eθT (N,K) > eθK
2
)

φ(θ) =
peθ

1− qeθ
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